资源类型

期刊论文 160

年份

2023 3

2022 20

2021 12

2020 15

2019 8

2018 9

2017 6

2016 6

2015 9

2014 5

2013 5

2012 6

2011 9

2010 7

2009 4

2008 5

2007 10

2006 7

2005 3

2003 3

展开 ︾

关键词

岩爆 2

数值模拟 2

疲劳寿命 2

神经网络 2

累积损伤 2

EBSD 1

GVG农情采样系统 1

HHT 1

LC4CS 铝合金 1

X射线 1

三维细观模拟 1

乘坐舒适性 1

交叉模态 1

作物灾情 1

健康监测 1

光流法 1

冲击损伤 1

冷伤害 1

冷却管 1

展开 ︾

检索范围:

排序: 展示方式:

Acoustic emissions evaluation of the dynamic splitting tensile properties of steel fiber reinforced concrete

《结构与土木工程前沿(英文)》   页码 1341-1356 doi: 10.1007/s11709-023-0988-4

摘要: This study empirically investigated the influence of freeze–thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete (SFRC). Brazilian disc splitting tests were conducted using four loading rates (0.002, 0.02, 0.2, and 2 mm/s) on specimens with four steel fiber contents (0%, 0.6%, 1.2%, and 1.8%) subjected to 0 and 50 freeze–thaw cycles. The dynamic splitting tensile damage characteristics were evaluated using acoustic emission (AE) parameter analysis and Fourier transform spectral analysis. The results quantified using the freeze–thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze–thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content. The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate, whereas that of high-frequency AE signals increased. Freeze–thaw action had little effect on the crack types observed during the early and middle stages of the loading process; however, the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze–thaw cycling. Notably, the results of this study indicate that the freeze–thaw damage to SFRC reduces AE signal activity at low frequencies.

关键词: steel fiber reinforced concrete     freeze–thaw cycling     Brazilian disc splitting test     acoustic emission technique     dynamic splitting tensile acoustic emission properties    

Tensile properties

QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 396-401 doi: 10.1007/s11705-008-0077-1

摘要: A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the tensile properties of PP/KT microcomposites was studied by uniaxial tensile test and the morphological structures of the stretched specimens were observed by scanning electron microscopy (SEM) and polarized optical microscopy (POM). We found that the Young’s modulus of PP/KT specimens increased with filler content, while the yield and break of the specimens are related to the filler particles size. The yield stress, the breaking stress and the ultimate elongation of PP/KT specimens were close to those of unfilled iPP specimens when the maximal filler particles size is less than a critical value, which is 7 ?m at a crosshead speed of 10 mm/min and 3 ?m at 200 mm/min, close to that of glass bead but far more than those of other rigid inorganic filler particles. The interfacial interaction was further estimated from yield stress, indicating that KT particles have a moderate interfacial interaction with iPP matrix. Thus, the incorporation of small KT particles can reinforce iPP matrix and simultaneously cause few detrimental effects on the other excellent tensile properties of iPP matrix, due to their organic nature, higher specific area, solid true-spherical shape and the homogenous dispersion of the ROF particles in microcomposites.

关键词: maximal     uniaxial tensile     unfilled     excellent tensile     influence    

Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action

Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1289-1300 doi: 10.1007/s11709-019-0548-0

摘要: There are many certain and uncertain design factors which have unrevealed rational effects on the generation of tensile damage and the stability of the circular tunnels during seismic actions. In this research paper, we have dedicated three certain and four uncertain design factors to quantify their rational effects using numerical simulations and the Sobol’s sensitivity indices. Main effects and interaction effects between the design factors have been determined supporting on variance-based global sensitivity analysis. The results detected that the concrete modulus of elasticity for the tunnel lining has the greatest effect on the tensile damage generation in the tunnel lining during the seismic action. In the other direction, the interactions between the concrete density and both of concrete modulus of elasticity and tunnel diameter have appreciable effects on the tensile damage. Furthermore, the tunnel diameter has the deciding effect on the stability of the tunnel structure. While the interaction between the tunnel diameter and concrete density has appreciable effect on the stability process. It is worthy to mention that Sobol’s sensitivity indices manifested strong efficiency in detecting the roles of each design factor in cooperation with the numerical simulations explaining the responses of the circular tunnel during seismic actions.

关键词: shear waves     Sobol’s sensitivity indices     maximum principal stress     maximum overall displacement     tensile damage    

An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete

Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1299-1315 doi: 10.1007/s11709-020-0712-6

摘要: The tensile behavior of hybrid fiber reinforced concrete (HFRC) is important to the design of HFRC and HFRC structure. This study used an artificial neural network (ANN) model to describe the tensile behavior of HFRC. This ANN model can describe well the tensile stress-strain curve of HFRC with the consideration of 23 features of HFRC. In the model, three methods to process output features (no-processed, mid-processed, and processed) are discussed and the mid-processed method is recommended to achieve a better reproduction of the experimental data. This means the strain should be normalized while the stress doesn’t need normalization. To prepare the database of the model, both many direct tensile test results and the relevant literature data are collected. Moreover, a traditional equation-based model is also established and compared with the ANN model. The results show that the ANN model has a better prediction than the equation-based model in terms of the tensile stress-strain curve, tensile strength, and strain corresponding to tensile strength of HFRC. Finally, the sensitivity analysis of the ANN model is also performed to analyze the contribution of each input feature to the tensile strength and strain corresponding to tensile strength. The mechanical properties of plain concrete make the main contribution to the tensile strength and strain corresponding to tensile strength, while steel fibers tend to make more contributions to these two items than PVA fibers.

关键词: artificial neural network     hybrid fiber reinforced concrete     tensile behavior     sensitivity analysis     stress-strain curve    

Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial

Biranchi PANDA,A. GARG,Zhang JIAN,Akbar HEIDARZADEH,Liang GAO

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 289-298 doi: 10.1007/s11465-016-0393-y

摘要:

Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

关键词: tensile properties     ultimate tensile strength     tensile elongation     friction stir welding     tool rotational speed     genetic programming     welding speed    

Biaxial tensile-compressive experiment of concrete at high temperatures

SONG Yupu, ZHANG Zhong, QING Likun, YU Changjiang

《结构与土木工程前沿(英文)》 2007年 第1卷 第1期   页码 94-98 doi: 10.1007/s11709-007-0009-z

摘要: Biaxial tension-compression experiments of concrete of five stress ratios at high temperatures were carried out using the large static-dynamic triaxial test system in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology. The stress ratios s1/s3 are 0, 0.1, 0.25, 0.50, and 0.75. The temperatures are 20vH, 200vH, 300vH, 500vH, 600vH. The mechanical behavior of concrete under biaxial tension-compression at high temperatures is analyzed. It is found that both the tensile strength and strain diminished with the increase in temperature under each stress ratio. Based on the test results, the relationship between tensile strengths and stress ratios and temperature is proposed. In addition, the failure criterion of concrete under biaxial stress state of tension-compression at high temperatures is established.

关键词: increase     Offshore Engineering     temperature     relationship     addition    

Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene

Wenjuan XU, Hong GAO, LiLan GAO, Xu CHEN, Yong WANG

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 103-109 doi: 10.1007/s11705-013-1315-8

摘要: A series of tensile and ratcheting experiments for compacted polytetrafluoroethylene (PTFE) and bronze filled PTFE (PTFE/bronze) were conducted on dynamic mechanical analyzer (DMA-Q800). The effects of mean stress, stress amplitude and temperature on the ratcheting behaviors of PTFE and PTFE/bronze were investigated. It is found that the stress-strain response of PTFE/bronze is nonlinear and its elastic modulus is higher than that of pure PTFE. For uniaxial ratcheting test, the dissipation strain energy density (DSED) decreases rapidly in the first 10 cycles and approaches a constant after 20 cycles. The ratcheting strain and the DSED corresponding to 100 cycles increase with increasing mean stress, stress amplitude and temperature. Additionally, the DSED and ratcheting strain of PTFE/bronze are much lower than those of pure PTFE under the same experimental conditions. It is also found that both pure PTFE and PTFE/bronze present cyclic hardening characteristics. Above all, the addition of bronze can improve both the uniaxial tensile property and the cyclic property of PTFE.

关键词: bronze filled polytetrafluoroethylene (PTFE/bronze)     uniaxial tensile behavior     ratcheting behavior     dissipation strain energy density (DSED)    

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD

Yue HOU, Linbing WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 270-278 doi: 10.1007/s11709-017-0408-8

摘要: In this paper, a combined DEM-MD method is proposed to simulate the crack failure process of Hydrated Cement Paste (HCP) under a tensile force. A three-dimensional (3D) multiscale mechanical model is established using the combined Discrete Element Method (DEM)-Molecular Dynamics (MD) method in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). In the 3D model, HCP consists of discrete particles and atoms. Simulation results show that the combined DEM-MD model is computationally efficient with good accuracy in predicting tensile failures of HCP.

关键词: hydrated cement paste     multiscale     MD simulation     DEM    

Windborne debris damage prediction analysis

Fangfang SONG, Jinping OU,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 326-330 doi: 10.1007/s11709-010-0067-5

摘要: Windborne debris is one of the most important causes of the envelop destruction according to the post-damage investigations. The problem of windborne debris damage could be summarized as three parts, including windborne debris risk analysis, debris flying trajectories, and impact resistance of envelope analysis. The method of debris distribution is developed. The flying trajectories of compact and plate-like debris are solved by using a numerical method according to the different aerodynamic characteristics. The impact resistance of the envelopes is also analyzed. Besides, the process of windborne debris damage analysis is described in detail. An example of industrial building is given to demonstrate the whole method by using the observed data of typhoon Chanchu (2006). The method developed in this paper could be applied to risk assessment of windborne debris for structures in wind hazard.

关键词: typhoon     windborne debris     structural envelopes     damage estimation    

Corrosion damage assessment and monitoring of large steel space structures

Bo CHEN, You-Lin XU, Weilian QU,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 354-369 doi: 10.1007/s11709-010-0088-0

摘要: Large steel space structures, when exposed to a harsh corrosive environment, are inevitably subjected to atmospheric corrosion and stress corrosion cracking. This paper proposes a framework for assessing the corrosion damage of large steel space structures subjected to both stress corrosion cracking and atmospheric corrosion. The empirical model for estimating atmospheric corrosion based on measured information is briefly introduced. The proposed framework is applied to a real large steel space structure built in the southern coastal area in China to assess its corrosion damage and investigate the effects of atmospheric corrosion on stress corrosion cracking. Based on the results, the conceptual design of the corrosion monitoring system of large steel space structures is finally conducted as the first step for a real corrosion monitoring system.

关键词: large steel space structure     atmospheric corrosion     stress corrosion cracking     corrosion damage     damage assessment     monitoring system    

Detection of damage locations and damage steps in pile foundations using acoustic emissions with deep

Alipujiang JIERULA, Tae-Min OH, Shuhong WANG, Joon-Hyun LEE, Hyunwoo KIM, Jong-Won LEE

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 318-332 doi: 10.1007/s11709-021-0715-y

摘要: The aim of this study is to propose a new detection method for determining the damage locations in pile foundations based on deep learning using acoustic emission data. First, the damage location is simulated using a back propagation neural network deep learning model with an acoustic emission data set acquired from pile hit experiments. In particular, the damage location is identified using two parameters: the pile location ( ) and the distance from the pile cap ( ). This study investigates the influences of various acoustic emission parameters, numbers of sensors, sensor installation locations, and the time difference on the prediction accuracy of and . In addition, correlations between the damage location and acoustic emission parameters are investigated. Second, the damage step condition is determined using a classification model with an acoustic emission data set acquired from uniaxial compressive strength experiments. Finally, a new damage detection and evaluation method for pile foundations is proposed. This new method is capable of continuously detecting and evaluating the damage of pile foundations in service.

关键词: pile foundations     damage location     acoustic emission     deep learning     damage step    

Creep life assessment of aero-engine recuperator based on continuum damage mechanics approach

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0702-6

摘要: The creep life of an aeroengine recuperator is investigated in terms of continuum damage mechanics by using finite element simulations. The effects of the manifold wall thickness and creep properties of brazing filler metal on the operating life of the recuperator are analyzed. Results show that the crack initiates from the brazing filler metal located on the outer surface of the manifold with the wall thickness of 2 mm and propagates throughout the whole region of the brazing filler metal when the creep time reaches 34900 h. The creep life of the recuperator meets the requirement of 40000 h continuous operation when the wall thickness increases to 3.5 mm, but its total weight increases by 15%. Decreasing the minimum creep strain rate with the enhancement of the creep strength of the brazing filler metal presents an obvious effect on the creep life of the recuperator. At the same stress level, the creep rupture time of the recuperator is enhanced by 13 times if the mismatch between the minimum creep rate of the filler and base metal is reduced by 20%.

关键词: creep     life assessment     brazed joint     continuum damage mechanics     aeroengine recuperator    

Bacterial inactivation, DNA damage, and faster ATP degradation induced by ultraviolet disinfection

Chao Yang, Wenjun Sun, Xiuwei Ao

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1192-6

摘要: • Long amplicon is more effective to test DNA damage induced by UV. • ATP in bacteria does not degrade instantly but does eventually after UV exposure. • After medium pressure UV exposure, ATP degraded faster. The efficacy of ultraviolet (UV) disinfection has been validated in numerous studies by using culture-based methods. However, the discovery of viable but non-culturable bacteria has necessitated the investigation of UV disinfection based on bacterial viability parameters. We used quantitative polymerase chain reaction (qPCR) to investigate DNA damage and evaluated adenosine triphosphate (ATP) to indicate bacterial viability. The results of qPCR effectively showed the DNA damage induced by UV when using longer gene amplicons, in that sufficiently long amplicons of both 16S and gadA indicated that the UV induced DNA damages. The copy concentrations of the long amplicons of 16S and gadA decreased by 2.38 log/mL and 1.88 log/mL, respectively, after exposure to 40 mJ/cm2 low-pressure UV. After UV exposure, the ATP level in the bacteria did not decrease instantly. Instead it decreased gradually at a rate that was positively related to the UV fluence. For low-pressure UV, this rate of decrease was slow, but for medium pressure UV, this rate of decrease was relatively high when the UV fluence reached 40 mJ/cm2. At the same UV fluence, the ATP level in the bacteria decreased at a faster rate after exposure to medium-pressure UV.

关键词: UV disinfection     DNA damage     qPCR     ATP    

The damage evolution behavior of polypropylene fiber reinforced concrete subjected to sulfate attack

Ninghui LIANG; Jinwang MAO; Ru YAN; Xinrong LIU; Xiaohan ZHOU

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 316-328 doi: 10.1007/s11709-022-0810-8

摘要: To study the damage evolution behavior of polypropylene fiber reinforced concrete (PFRC) subjected to sulfate attack, a uniaxial compression test was carried out based on acoustic emission (AE). The effect of sulfate attack relative to time and fiber hybridization were analyzed and the compression damage factor was calculated using a mathematical model. The changes to AE ringing counts during the compression could be divided into compaction, elastic, and AE signal hyperactivity stages. In the initial stage of sulfate attack, the concrete micropores and microcracks were compacted gradually under external load and a corrosion products filling effect, and this corresponded with detection of few AE signals and with concrete compression strength enhancement. With increasing sulfate attack time, AE activity decreased. The cumulative AE ringing counts of PFRC at all corrosion ages were much higher than those for plain concrete. PFRC could still produce AE signals after peak load due to drawing effect of polypropylene fiber. After 150 d of sulfate attack, the cumulative AE ringing counts of plain concrete went down by about an order of magnitude, while that for PFRC remained at a high level. The initial damage factor of hybrid PFRC was −0.042 and −0.056 respectively after 150 d of corrosion, indicating that the advantage of hybrid polypropylene fiber was more obvious than plain concrete and single-doped PFRC. Based on a deterioration equation, the corrosion resistance coefficient of hybrid PFRC would be less than 0.75 after 42 drying−wetting sulfate attack cycles, which was 40% longer than that of plain concrete.

关键词: polypropylene fiber reinforced concrete     sulfate attack     damage evolution behavior     acoustic emission     damage factor    

Spectral element modeling based structure piezoelectric impedance computation and damage identification

Zhigang GUO, Zhi SUN

《结构与土木工程前沿(英文)》 2011年 第5卷 第4期   页码 458-464 doi: 10.1007/s11709-011-0133-7

摘要: This paper presents a numerical simulation study on electromechanical impedance technique for structural damage identification. The basic principle of impedance based damage detection is structural impedance will vary with the occurrence and development of structural damage, which can be measured from electromechanical admittance curves acquired from PZT patches. Therefore, structure damage can be identified from the electromechanical admittance measurements. In this study, a model based method that can identify both location and severity of structural damage through the minimization of the deviations between structural impedance curves and numerically computed response is developed. The numerical model is set up using the spectral element method, which is promised to be of high numerical efficiency and computational accuracy in the high frequency range. An optimization procedure is then formulated to estimate the property change of structural elements from the electric admittance measurement of PZT patches. A case study on a pin-pin bar is conducted to investigate the feasibility of the proposed method. The results show that the presented method can accurately identify bar damage location and severity even when the measurements are polluted by 5% noise.

关键词: PZT     piezoelectric impedance     optimization     spectral element     damage identification    

标题 作者 时间 类型 操作

Acoustic emissions evaluation of the dynamic splitting tensile properties of steel fiber reinforced concrete

期刊论文

Tensile properties

QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei

期刊论文

Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action

Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR

期刊论文

An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete

Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG

期刊论文

Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial

Biranchi PANDA,A. GARG,Zhang JIAN,Akbar HEIDARZADEH,Liang GAO

期刊论文

Biaxial tensile-compressive experiment of concrete at high temperatures

SONG Yupu, ZHANG Zhong, QING Likun, YU Changjiang

期刊论文

Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene

Wenjuan XU, Hong GAO, LiLan GAO, Xu CHEN, Yong WANG

期刊论文

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD

Yue HOU, Linbing WANG

期刊论文

Windborne debris damage prediction analysis

Fangfang SONG, Jinping OU,

期刊论文

Corrosion damage assessment and monitoring of large steel space structures

Bo CHEN, You-Lin XU, Weilian QU,

期刊论文

Detection of damage locations and damage steps in pile foundations using acoustic emissions with deep

Alipujiang JIERULA, Tae-Min OH, Shuhong WANG, Joon-Hyun LEE, Hyunwoo KIM, Jong-Won LEE

期刊论文

Creep life assessment of aero-engine recuperator based on continuum damage mechanics approach

期刊论文

Bacterial inactivation, DNA damage, and faster ATP degradation induced by ultraviolet disinfection

Chao Yang, Wenjun Sun, Xiuwei Ao

期刊论文

The damage evolution behavior of polypropylene fiber reinforced concrete subjected to sulfate attack

Ninghui LIANG; Jinwang MAO; Ru YAN; Xinrong LIU; Xiaohan ZHOU

期刊论文

Spectral element modeling based structure piezoelectric impedance computation and damage identification

Zhigang GUO, Zhi SUN

期刊论文